Water and Carbon Capture and Storage

William Bourcier

August 18, 2010

We believe production and treatment of saline aquifer waters can benefit CCS

- Extraction of saline waters from carbon storage sites can:
 - Produce fresh water
 - Increase CO₂ storage volume and reduce footprint
 - Reduce CO₂ storage risk
 - Allow reservoir pressure management
 - Prevent induced seismicity
- Provided that:
 - The brines are treatable (chemistry)
 - The costs are favorable

We will desalinate aquifer brines to create fresh water and space for additional CO₂ storage

- Produce water from neighboring well
- **Desalinate**
- Reinject the concentrate

Treating displaced brine to make fresh water

- Help manage pressure in the saline aquifer
- Provide half the energy plant's operating water

Roughly ½ of the world's saline aquifers are suitable for standard reverse osmosis treatment

Treatment Feasibility

10,000-40,000 mg/L: Standard RO

40,000-85,000 mg/L: Low-recovery RO

85,000-300,000 mg/L: Multi-stage NF+RO

> 300,000 mg/L: Not treatable

Several desalination technologies exist

- none are energy efficient

Reverse osmosis and Nanofiltration (pressure)

Electrodialysis and Capacitive Deionization (charge)

Distillation (heat)

Osmotic pressure limits the salinity of brines that can be desalinated using reverse osmosis

RO = Reverse Osmosis NF = Nanofiltration

%Extraction = amount of water separated from brine

A modified sea water RO system is recommended for desalination of saline aquifer fluids

Key differences:

Pretreatment:

- •less bio control
- more scale control
- anoxic

Chiller needed to cool fluid to working range for polymer membranes

Pressurized fluid allows low recovery:

- •no high P pump
- •less scaling
- •longer membrane lifetime
- •lower pressure for given TDS
- Need high P for reinjection

No energy recovery step

Water costs are relatively low if process energy is supplied by reservoir pressure

Levelized Cost of Water vs Recovery, High Pressure Pump vs Reservoir Pressure

One can actively manage the reservoir through producing and treating water

Active CO₂ Reservoir Management provides several benefits

- Reduces CO₂ plume footprint and increases resource use
- Greatly reduces pressure buildup and attendant risks (e.g., seismicity)
- Allows for Enhanced Water Recovery

Active CO₂ Reservoir Management

The current P-T limits of reverse osmosis can be expanded by using stronger spacing materials

The polyamide membrane is <u>not</u> the limiting factor

With a relatively low-risk R&D effort we could build an RO element that functions up to 150°C and 100 bars, and desalinate brines with salinities of 15 wt %

We can produce water at sequestration sites for low cost, reducing environmental footprint and adding value

How much water are we talking about?

For 1000 MW coal plant:

3 million tons $CO_2 = 4$ million m³ water

- 3000 acre-feet
- Serve 5000 homes
- Irrigate 1000 acres of crops
- Provide half the cooling water needed for the plant

Rules of thumb for RO desalination costs: Capital cost = 3.5-4.5 times gallons per day (GPD) product capacity Total cost = \$0.5-1 per m³ product (2-4¢/gallon)

Summary

- Extraction of saline waters from carbon storage sites can:
 - Produce potable water from about half of the available subsurface brines
 - Produce fresh water at about \$800/AF
 - Reduce CO₂ storage risk
 - Substantially reduce the footprint of the CS site
 - Limit and reduce the maximum pressure of the reservoir

BACKUP

Future energy development will put new demands on water resources

Water Used for Fuel Extraction and Processing

Constraints will grow for energy development and power plant siting

Conventional capture technologies increase overall water usage

Relative Water Usage for New PC and IGCC Plants

Nanofiltration provides one path to treat high salinity brines

- Removal of divalent ions makes water directly usable as cooling water - even at high TDS
- Lowering of TDS may allow subsequent treatment using reverse osmosis

